如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.(1)求证:MN∥平面PAD;(2)求证:平面PMC⊥平面PCD.
(本大题13分)如图,椭圆的左焦点为,过点的直线交椭圆于两点.的最大值是,的最小值是,满足. (1)求该椭圆的离心率; (2)设线段的中点为,的垂直平分线与轴和轴分别交于两点,是坐标原点.记的面积为,的面积为,求的取值范围.
(本小题12分)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
(1)已知在全体样本中随机抽取人,抽到持“应该保留”态度的人的概率为,现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人? (2)在持“应该保留”态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数的分布列和数学期望.
(本大题12分)如图,平面平面,四边形为矩形,.为的中点,. (1)求证:; (2)若时,求二面角的余弦值.
【改编】已知函数. (1)若,求的值域; (2)在中,角所对的边分别是,若,且,求边的长.
(本小题满分7分)选修4—5:不等式选讲 已知正数满足, (Ⅰ)求证:;(Ⅱ) 求的最小值.