如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.(1)求证:MN∥平面PAD;(2)求证:平面PMC⊥平面PCD.
已知,且,求证:
已知、y为正数,且, 求x+y的最小值。
(本小题满分14分)已知函数的导函数的图象关于直线对称。 (1)求b的值;(2)若函数无极值求c的取值范围;(3)若在处取得极小值,记此极小值为的定义域和值域。
(本小题满分12分)已知椭圆的长轴长为4。(1)若以原点为圆心、椭圆短半轴为半径的圆与直线相切,求椭圆焦点坐标;(2)若点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,记直线PM,PN的斜率分别为,当时,求椭圆的方程。
(本小题满分12分)将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a,正四面体的三个侧面上的数字之和为b”。设复数为(1)若集合,用列举法表示集合A;(2)求事件“复数在复平面内对应的点”的概率。