如图,四棱锥的底面是矩形,⊥平面,,.(1)求证:⊥平面;(2)求二面角余弦值的大小;(3)求点到平面的距离.
已知椭圆:()过点,其左、右焦点分别为,且. (Ⅰ)求椭圆的方程; (Ⅱ)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.
已知数列满足. (Ⅰ)证明数列是等差数列; (Ⅱ)求数列的通项公式; (Ⅲ)设,求数列的前项和.
(本题满分12分)在如图的多面体中,⊥平面,,,,,,,是的中点. (Ⅰ) 求证:平面; (Ⅱ) 求证:; (Ⅲ) 求二面角的余弦值.
(本题满分12分)一厂家向用户提供的一箱产品共件,其中有件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品. (Ⅰ)求这箱产品被用户接收的概率; (Ⅱ)记抽检的产品件数为,求随机变量的分布列和数学期望.
(本题满分12分) 在中,分别是角的对边,,. (Ⅰ)求的值; (Ⅱ)若,求边的长.