如图,已知四棱锥的底面是正方形,⊥底面,且,点、分别为侧棱、的中点 (1)求证:∥平面;(2)求证:⊥平面.
(本小题满分12分)已知数列中,,,其前项和满足;数列中,,.(1)求数列、的通项公式;(2)设为非零整数,),试确定的值,使得对任意,都有成立.
(本小题满分12分)如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90O,∠EAC=600,AB=AC=AE.(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论;(2)求平面EBD与平面ABC所成的锐二面角的大小。
(本小题满分12分)某中学经市人民政府批准建分校,工程从2010年底开工到2013年底完工,工程分三期完成。经过初步招投标淘汰后,确定只由甲、乙两家建筑公司承建,且每期工程由两公司之一独立承建,必须在建完前一期工程后再建后一期工程。已知甲公司获得第一期、第二期、第三期工程承包权的概率分别为.(1)求甲、乙两公司各至少获得一期工程的概率;(2)求甲公司获得工程期数的分布列和数学期望.
(本小题满分10分)设△ABC的内角A、B、C所对的边分别为a,b,c,且.(1)求角A的大小; (2)求的取值范围。
已知函数.,直线/的方程为(1)若直线l是曲线.的切线,求证I对任意成立;(2)若对任意成立,求实数k,b应满足的条件.