某校准备在甲、乙两家公司为毕业班学生制作一批纪念册.甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费.(1)请写出制作纪念册的册数与甲公司的收费(元)的函数关系式.(2)请写出制作纪念册的册数与甲公司的收费(元)的函数关系式.(3)如果学校派你去甲、乙两甲公司订做纪念册,你会选择哪家公司?
已知:如图,E,F在AC上,AD//CB且AD=CB,∠D=∠B.求证:AE=CF.
如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(_ ),点C的坐标为(_ );(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接P
(1)如图(1),当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;(2)如图(2),当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;(3)若矩形ABCD在平面直角坐标系xoy中,点B的坐标为(1,1),点D的坐标为(5,3),如图(3)所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.
每年的农历三月初一为通州风筝节.这天,小刘同学正在江海明珠广场上放风筝,如图风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和广场边旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC为多少米?(结果可保留根号)
爸爸给双胞胎兄弟小明和小强带回一张篮球比赛门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.小明:A袋中放着分别标有数字1、2、3的三个小球,B袋中放着分别标有数字4、5 的两个小球,且都已各自搅匀,小强蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则小明得到门票;若积为奇数,则小强得到门票.小强:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,小明、小强各蒙上眼睛有放回地摸1次,小明摸到偶数就记2分,摸到奇数记0分;小强摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)小明设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小强设计的游戏方案对双方是否公平?不必说理.