(本小题12分)某产品原来的成本为1000元/件,售价为1200元/件,年销售量为1万件。由于市场饱和顾客要求提高,公司计划投入资金进行产品升级。据市场调查,若投入万元,每件产品的成本将降低元,在售价不变的情况下,年销售量将减少万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为(单位:万元).(纯利润=每件的利润×年销售量-投入的成本)(Ⅰ)求的函数解析式;(Ⅱ)求的最大值,以及取得最大值时的值.
求使函数y=-2sin2x取得最大值的x的集合,并指出最大值是什么。
求函数y=tan(x+)的定义域.
本题满分12分) 在直角坐标平面内,已知点,动点满足. (1)求动点的轨迹的方程; (2)过点作直线与轨迹交于两点,线段的中点为,轨迹的右端点为点N,求直线MN的斜率的取值范围.
如图已知,点P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD,,,。 (1)求证:; (2)求直线PB与平面ABE所成的角; (3)求A点到平面PCD的距离。
已知数列{}的首项,通项(为常数),且成等差数列,求:(1)的值; (2)数列{}的前项的和的公式。