如图,△ABC中,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图象经过点B、D.(1)用m的代数式表示点A、D的坐标;(2)求这个二次函数关系式;(3)点Q(x,y)为二次函数图象上点P至点B之间的一点,连接PQ、BQ,当x为何值时,四边形ABQP的面积最大?
先化简再求值:(-x2+5x)-(x-3)-4x,其中x=-1.
若关于x的一元二次方程kx2-4x+2=0有实数根.(1)求k的取值范围;(2)若∆ABC中,AB=AC=2,AB、BC的长是方程kx2-4x+2=0的两根,求BC的长.
如图,已知CB是圆O的直径,点A在圆上,且∠AOB=60o,连接OA,过点A作PA⊥OA交CB的延长线于点P,PA=. (1)求☉O的半径; (2)求∆AOC的面积.
如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,已知∆ABC: (1)作出∆ABC关于点O成中心对称的图形∆A1B1C1,并写出点B对应点B1的坐标; (2)作出把∆ABC绕点A逆时针旋转90°后的图形∆AB2C2.写出点C对应点C2的坐标.
解方程:3(x+2)2=x+2