(本小题12分)定义运算:(1)若已知,解关于的不等式(2)若已知,对任意,都有,求实数的取值范围。
如图,在四棱锥A-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点. (1)当E为侧棱SC的中点时,求证:SA∥平面BDE; (2)求证:平面BDE⊥平面SAC; (3)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.
设是公比大于1的等比数列,Sn为数列的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列. (1)求数列的通项公式; (2)令,求数列的前n项和Tn.
已知点及圆:. (Ⅰ)若直线过点且与圆心的距离为1,求直线的方程; (Ⅱ)设过点P的直线与圆交于、两点,当时,求以线段为直径的圆的方程; (Ⅲ)设直线与圆交于,两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.
如图所示,正方形和矩形所在平面相互垂直,是的中点. (I)求证:; (Ⅱ)若直线与平面成45o角,求异面直线与所成角的余弦值.
如图:已知平面//平面,点A、B在平面内,点C、D在内,直线AB与CD是异面直线,点E、F、G、H分别是线段AC、BC、BD、AD的中点, 求证:(Ⅰ)E、F、G、H四点共面; (Ⅱ)平面EFGH//平面.