如图,已知,AB的垂直平分线MN交AC于点D,求的度数.
已知二次函数图象的对称轴是,且函数有最大值为2, 图象与x轴的一个交点是(-1,0),求这个二次函数的解析式.
已知抛物线.(1)用配方法将化成的形式;(2)将此抛物线向右平移1个单位,再向上平移2个单位,求平移后所得抛物线的解析式.
锐角中,,,两动点分别在边上滑动,且,以为边向下作正方形,设其边长为,正方形与公共部分的面积为.(1)中边上高 ;(2)当恰好落在边上(如图1);求正方形的边长(3)当在外部时(如图2),求关于的函数关系式(写出的取值范围),并求出为何值时最大,最大值是多少?
某商场出售一种成本为20元的商品,市场调查发现,该商品每天的销售量(千克)与销售价(元/千克)有如下关系:.设这种商品的销售利润为(元).(1)求与之间的函数关系式;(2)在不亏本的前提下,销售价在什么范围内每天的销售利润随售价增加而增大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形