设等腰三角形顶角为α,一腰上的高线与底边所夹的角为β,是否存在α和β之间的必然关系?若存在,则把它找出来;若不存在,则说明理由。小明是这样做的,解:不存在,因为等腰三角形的角可以是任意度数。亲爱的同学,你认为小明的解法对吗?若不对,那么你是怎么做的,请你写出来。
如图,某水渠的横断面是以 A B 为直径的半圆 O ,其中水面截线 M N ∥ A B .嘉琪在 A 处测得垂直站立于 B 处的爸爸头顶 C 的仰角为 14 ° ,点 M 的俯角为 7 ° .已知爸爸的身高为 1 . 7 m .
(1)求 ∠ C 的大小及 A B 的长;
(2)请在图中画出线段 D H ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).
(参考数据: tan 76 ° 取 4 , 17 取 4 . 1 )
如图,点 P ( a , 3 ) 在抛物线 C : y = 4 ﹣ ( 6 ﹣ x ) 2 上,且在 C 的对称轴右侧.
(1)写出 C 的对称轴和 y 的最大值,并求 a 的值;
(2)坐标平面上放置一透明胶片,并在胶片上描画出点 P 及 C 的一段,分别记为 P ′ , C ′ .平移该胶片,使 C ′ 所在抛物线对应的函数恰为 y = ﹣ x 2 + 6 x ﹣ 9 .求点 P ′ 移动的最短路程.
发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.
验证 如, ( 2 + 1 ) 2 + ( 2 ﹣ 1 ) 2 = 10 为偶数.请把 10 的一半表示为两个正整数的平方和;
探究 设“发现”中的两个已知正整数为 m , n ,请论证“发现”中的结论正确.
某公司要在甲、乙两人中招聘一名职员,对两人的学历,能力、经验这三项进行了测试.各项满分均为 10 分,成绩高者被录用.图1是甲、乙测试成绩的条形统计图,
(1)分别求出甲、乙三项成绩之和,并指出会录用谁;
(2)若将甲、乙的三项测试成绩,按照扇形统计图(图2)各项所占之比,分别计算两人各自的综合成绩,并判断是否会改变(1)的录用结果.
整式 3 ( 1 3 - m ) 的值为 P .
(1)当 m = 2 时,求 P 的值;
(2)若 P 的取值范围如图所示,求 m 的负整数值.