铁路上A、B两点相距20㎞,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15㎞,CB=5㎞,现在要在铁路AB上修建一个土特产收购站E,使得C、D两村到E站的距离相等,则E站应修建在离A站多少千米处?
解下列方程组(1) (2)
化简:
已知,在平面直角坐标系中,A(a,0)、B(0,b),a、b满足 +|a−3 |=0.C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求∠OAB的度数;(2)设AB=6,当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值;(3)设AB=6,若∠OPD=45°,求点D的坐标.
如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.