如图.抛物线y=x2-4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y="x+" m与对称轴交于点Q. ( 1 )这条抛物线的对称轴是 ,直线PQ与x軸所夹锐角的度数是 ; (2)若两个三角形面积满足,求m的値; (3)当点P在x軸下方的抛物线上时.过点C(2,2)的直线AC与直线PQ交于点D,求: PD+DQ的最大值;②PD·DQ的最大值.
如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).⑴在图1中,画一个直角三角形,使它的三边长都是有理数;⑵在图2、图3中,分别画一个直角三角形,使它的三边长都是无理数(两个三角形不全等)
在某一平地上,有一棵高6米的大树,一棵高3米的小树,两树之间相距4米。今一只小鸟在其中一棵树的树梢上要飞到另一棵树的树梢上,问它飞行的最短距离是多少?
你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度是面条的粗细(横截面积)的反比例函数,其图像如图所示.(1)写出与的函数关系式;(2)若面条的总长度是50m时,面条的粗细是多少?(3)当面条的粗细应不小于,面条的总长度最长是多少?
如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C-∠B=30°,则∠DAE=________.(2)若∠C-∠B=(∠C>∠B),求∠DAE的度数(用含的代数式表示).
如图,在ΔA BC中,CD是高,点E、F、G 分别在BC、AB、AC上且EF⊥AB,DG∥BC,试说明,则判断∠1与∠2的大小关系,并说明理由。