如图.抛物线y=x2-4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y="x+" m与对称轴交于点Q. ( 1 )这条抛物线的对称轴是 ,直线PQ与x軸所夹锐角的度数是 ; (2)若两个三角形面积满足,求m的値; (3)当点P在x軸下方的抛物线上时.过点C(2,2)的直线AC与直线PQ交于点D,求: PD+DQ的最大值;②PD·DQ的最大值.
已知:x2﹣2x﹣3=0.求代数式(x﹣2)2﹣(x+2)(x﹣2)+x(x+2)的值.
已知x+y=3,xy=5,求x2﹣xy+y2的值.
(2m﹣5)(5+2m)﹣(2m﹣5)2.
计算:(x﹣2y)(x+2y)+4y2.
先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.