已知:如图,点B、C、E在同一条直线上,AC∥DE,AC=CE,BC=DE,求证:AB=CD。
解下列方程(每题5分,共10分)(1) (2)(用配方法解)
如图①②,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C1DE的位置.(1)求C1点的坐标;(2)求经过三点O、A、C1的抛物线的解析式;(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF的解析式;(4)抛物线上是否存在一点M,使得.若存在,请求出点M的坐标;若不存在,请说明理由.
(1)计算:如图①,直径为的三等圆⊙O、⊙O、⊙O两两外切,切点分别为A、B、C ,求OA的长(用含的代数式表示).(2)探索:若干个直径为的圆圈分别按如图10②所示的方案一和如图10③所示的方案二的方式排放,探索并求出这两种方案中层圆圈的高度和(用含、的代数式表示).(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(≈1.73)
某批发市场批发甲、乙两种水果,甲种水果的销售利润(万元)与进货量(吨)近似满足函数关系;乙种水果的销售利润(万元)与进货量(吨)近似满足函数关系(其中为常数),当为1吨时, 为1.4万元;当为2吨时, 为2.6万元.(1)求出的值,并写出(万元)与(吨)之间的函数关系式. (2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为吨,请你写出这两种水果所获得的销售利润之和(万元)与(吨)之间的函数关系式,并写出的取值范围。(3)在(2)的前提下,这两种水果各进多少吨时,获得的销售利润之和最大,最大利润是多少?
在中,,是边上一点,以为直径的与边相切于点,连结并延长,与的延长线交于点.(1)求证:;(2)若,求的面积.