某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=.其中x是仪器的月产量.(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)
一个盒子中装有大小相同的小球个,在小球上分别标有1,2,3,,的号码,已知从盒子中随机的取出两个球,两球的号码最大值为的概率为, (Ⅰ)问:盒子中装有几个小球? (Ⅱ)现从盒子中随机的取出4个球,记所取4个球的号码中,连续自然数的个数的最大值为随机变量(如取2468时,=1;取1246时,=2,取1235时,=3), (ⅰ)求的值;(ⅱ)求随机变量的分布列及均值.
已知:向量(O为坐标原点). (Ⅰ)求的最大值及此时的值组成的集合; (Ⅱ)若A点在直线上运动,求实数的取值范围.
((本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:().
(本小题满分14分) 已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.数列满足,为数列的前n项和. (1)求、和; (2)若对任意的,不等式恒成立,求实数的取值范围; (3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
((本小题满分14分) 已知点是椭圆的右焦点,点、分别是轴、轴上的动点,且满足.若点满足. (1)求点的轨迹的方程; (2)设过点任作一直线与点的轨迹交于、两点,直线、与直线分别交于点、(为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.