(本大题满分14分)已知,,当为何值时,与平行?平行时它们是同向还是反向?
(本小题满分12分)已知向量.令,(1)求的最小正周期;(2)当时,求的最小值以及取得最小值时的值.
(本小题满分14分)已知函数,过点作曲线的两条切线,,切点分别为,. (1)当时,求函数的单调递增区间; (2)设,求函数的表达式; (3)在(2)的条件下,若对任意的正整数,在区间内,总存在个数使得不等式成立,求的最大值.
(本小题满分14分)已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.(1)求抛物线和椭圆的标准方程;(2)过点的直线交抛物线于两不同点,交轴于点,已知,,求的值;(3)直线交椭圆于两不同点,在轴的射影分别为,,若点满足,证明:点在椭圆上.
(本小题满分14分)已知数列的前项和,且.(1)求数列的通项公式;(2)令,是否存在,使得、、成等比数列.若存在,求出所有符合条件的值;若不存在,请说明理由.
(本小题满分14分)三棱柱的直观图及三视图(正视图和俯视图是正方形,侧视图是等腰直角三角形)如图所示,为的中点.(1)求证:平面;(2)求二面角的正切值.