如图所示,正比例函数的图象与反比例函数的图象交于点A(3,2).(1)求正比例函数和反比例函数的表达式;(2)根据图象直接回答:在第一象限内,当x取何值时,反比例函数的值小于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段MB与DM的大小关系,并说明理由.
已知关于x的一元二次方程(a+c)x2+2bx+(a-c=0),其中a、b、c分别为△ABC三边的长.(1)如果是方程的根,试判断的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断的形状,并说明理由;(3)如果是等边三角形,试求这个一元二次方程的根.
在下列网格图中,每个小正方形的边长均为1个单位.在中,,.(1)试在图中做出以为旋转中心,沿顺时针方向旋转90°后的图形;(2)若点B的坐标为,试在图中画出直角坐标系,并写出、两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形,并写出、两点的坐标.
如图,有一张纸片,是由边长为的正方形、斜边长为的等腰直角三角形组成的(<),90°,且边和在同一条直线上.要通过适当的剪拼,得到一个与之面积相等的正方形.(Ⅰ)该正方形的边长为 ;(Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要说明剪拼的过程: .
如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.
书籍是人类进步的阶梯!为爱护书一般都将书本用封皮包好.问题1:现有精装词典长、宽、厚尺寸如图(1)所示(单位:cm),若按图(2)的包书方式,将封面和封底各折进去3cm.试用含a、b、c的代数式分别表示词典封皮(包书纸)的长是 cm,宽是 cm;问题2:在如图(4)的矩形包书纸皮示意图中,虚线为折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长即为折叠进去的宽度.(1)若有一数学课本长为26cm、宽为18.5cm、厚为1cm,小海宝用一张面积为1260cm2的矩形纸包好了这本数学书,封皮展开后如图(4)所示.若设正方形的边长(即折叠的宽度)为x cm,则包书纸长为 cm,宽为 cm(用含x的代数式表示).(2)请帮小海宝列好方程,求出第(1)题中小正方形的边长x cm.