如图所示,正比例函数的图象与反比例函数的图象交于点A(3,2).(1)求正比例函数和反比例函数的表达式;(2)根据图象直接回答:在第一象限内,当x取何值时,反比例函数的值小于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段MB与DM的大小关系,并说明理由.
计算:(1)(-3)2-+(-1)0+(2)
如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴交于点A、B两点,与y轴交于点C.(1)求A、B两点的坐标;(2)若S△ABC=8,则过A、B、C三点的圆是否与抛物线有第四个交点D?若存在,求出D点坐标;若不存在,说明理由.(3)将△OAC沿直线AC翻折,点O的对应点为O'.①若O'落在该抛物线的对称轴上,求实数a的值;②是否存在正整数a,使得点O'落在△ABC的内部,若存在,求出整数a的值;若不存在,请说明理由.
如图,在平面直角坐标中,点A的坐标为(1,1),OA=AC,∠OAC=90°,点D为x轴上一动点.以AD为边在AD的右侧作正方形ADEF.(1)当点D在线段OC上时(不与点O、C重合),则线段CF与OD之间的数量关系为 ;位置关系为 , (2)当点D在线段OC的延长线上时,(1)中的结论是否成立?若成立,请说明理由;若不成立,请举一反例;(3)设D点坐标为(t,0),当D点从O点运动到C点时,用含t的代数式表示E点坐标,并直接写出E点所经过的路径长.
如图△ABC中,AB=AC,AE⊥BC,E为垂足,F为AB上一点.以BF为直径的圆与AE相切于M点,交BC于G点.(1)求证:BM平分∠ABC;(2)当BC=4,cosC=时,①求⊙O的半径;②求图中阴影部分的面积.(结果保留π与根号)
一天,某渔船离开港口前往黄岩岛海域捕鱼,8小时后返航,此时一艘渔政船从该港口出发前往黄岩岛巡查(假设渔政船与渔船沿同一航线航行)。下图是渔政船及渔船到港口的距离S和渔船离开港口的时间t之间的函数图象.(1)写出渔船离港口的距离S和它离开港口的时间t的函数关系式;(2)在渔船返航途中,什么时间范围内两船间距离不超过30海里?