小明的家(记为A)与他上学的学校(记为B)、书店(记为C)依次坐落再一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条大街向东走了40米,接着又向西走了 70米达到D处.试用数轴表示上述A,B,C,D的位置.
如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣4,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得?QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)设此抛物线与直线y=﹣x在第二象限交于点D,平行于y轴的直线x=m(-1-<m<0)与抛物线交于点M,与直线y=﹣x交于点N,连接BM、CM、NC、NB,是否存在m的值,使四边形BNCM的面积S最大?若存在,请求出m的值,若不存在,请说明理由.
如图所示,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)如果⊙O的半径为4,CD=,求∠BAC的度数;(2)若点E为的中点,连接OE,CE.求证:CE平分∠OCD;(3)在(1)的条件下,圆周上到直线AC距离为3的点有多少个?并说明理由.
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于65元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与涨价x(元/箱)之间的函数关系式;(2)求当每箱苹果的销售价为多少元,批发商平均每天的销售利润W(元)可以获得最大?
如图,AB为的直径,AB=AC,BC交于点D,AC交于点E.(1)求证:BD=CD; (2)若AB=8,∠BAC=45°,求阴影部分的面积.
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2),将△OAB绕点O逆时针旋转90°后得△OA1B1.(1)在图中作出△OA1B1并直接写出A1,B1的坐标;(2)求点B旋转到点B1所经过的路线长(结果保留π).