如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
如图,在△ABC中,∠BAC=90°,D为BC的中点,AE⊥AD,AE交CB的延长线于点E.(1)求证:△EAB∽△ECA;(2)△ABE和△ADC是否一定相似?如果相似,加以说明;如果不相似,那么增加一个怎样的条件,△ABE和△ADC一定相似.
如图,Rt△ABC,D是斜边AC上的一动点(点D不与点A、C重合),过D点作直线截△ABC,使截得的三角形与△ABC相似,请你画出满足条件的所有直线.
多项式x2+1加上一个整式后是含x的二项式的完全平方式.例题:x2+1+ _________ =(x+1)2.(1)按上例再写出两个加上一个单项式后是含x的二项式的完全平方式的式子(不能用已知的例题):①x2+1+ _________ =(x﹣1)2;②x2+1+ _________ =(x2+1)2.(2)按上例写出一个加上一个多项式后是一个含x的二项式的完全平方式x2+1+ _________ =(x2+1)2.
当a=﹣3,b=1,时,分别求代数式(a﹣b)2与a2﹣2ab+b2的值,并比较计算结果;你有什么发现?利用你发现的结果计算:20122﹣2×2012×2011+20112.
试说明:(a2+3a)(a2+3a+2)+1是一个完全平方式.