已知数列{}的前n项和,(Ⅰ)求数列{}的通项公式.(Ⅱ)求数列{||}的前n项和.
成都七中为绿化环境,移栽了银杏树2棵,梧桐树3棵。它们移栽后的成活率分别为且每棵树是否存活互不影响,求移栽的5棵树中: (1)银杏树都成活且梧桐树成活2棵的概率; (2)成活的棵树的分布列与期望.
已知为坐标原点,,. (Ⅰ)若的定义域为,求的单调递增区间; (Ⅱ)若的定义域为,值域为,求的值.
设,两个函数,的图像关于直线对称. (1)求实数满足的关系式; (2)当取何值时,函数有且只有一个零点; (3)当时,在上解不等式.
如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点. (1)求点的轨迹曲线的方程; (2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明) (3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
已知函数,设曲线在点处的切线与轴的交点为,其中为正实数. (1)用表示; (2),若,试证明数列为等比数列,并求数列的通项公式; (3)若数列的前项和,记数列的前项和,求.