已知正方体中,,分别为,的中点,,.求证:(1),,,四点共面;(2)若交平面于点,则,,三点共线.
已知函数 (I)求函数的单调递增区间; (II)若的图像有公共点,且在该点处的切线相同,用a表示b,并求b的最大值。
已知函数 (I)求数列的通项公式; (II)若数列
某学校有男教师150名,女教师100人,按照分层抽样的方法抽出5人进行一项问卷调查。 (I)求某老师被抽到的概率及5人中的男、女教师的人数; (II)若从这5人中选出两人进行某项支教活动,则抽出的两人中恰有一名女教师的概率。
如图,DC⊥平面ABC,EB//DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE、AB的中点。 (I)证明:PQ//平面ACD; (II)求异面直线AE与BC所成角的余弦值; (III)求AD与平面ABE所成角的正弦值;
若向量,在函数的图象中,对称中心到对称轴的最小距离为且当的最大值为1。 (I)求函数的解析式; (II)求函数的单调递增区间。