如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点。(1) 求证:△ABE∽△ECM;(2) 探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由;(3) 当线段AM最短时,求重叠部分的面积。
如图,反比例函数的图象与一次函数的图象交于点A(m,2),点B(-2, n ),一次函数图象与y轴的交点为C.求△AOC的面积。
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图. (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
如图所示,在平面直角坐标系中,一次函数y=kx+1,的图象与反比例函数的图象在第一象限相交于点A,过点A分别作x 轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.
已知二次函数当x=1时,y有最大值为5,且它的图象经过点(2,3),求这个函数的关系式.
与成反比例,当=2时,=-1,求函数解析式和自变量的取值范围。