(本小题满分13分)已知,,,…,.(Ⅰ)请写出的表达式(不需证明);(Ⅱ)求的极小值;(Ⅲ)设,的最大值为,的最小值为,试求的最小值.
二阶矩阵A,B对应的变换对圆的区域作用结果如图所示.(1)请写出一个满足条件的矩阵A,B;(2)利用(1)的结果,计算C=BA,并求出曲线在矩阵C对应的变换作用下的曲线方程.
已知函数(其中),为f(x)的导函数.(1)求证:曲线y=在点(1,)处的切线不过点(2,0);(2)若在区间中存在,使得,求的取值范围;(3)若,试证明:对任意,恒成立.
已知椭圆C:( )的离心率为,点(1,)在椭圆C上.(1)求椭圆C的方程; (2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点;(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.
如图长方体中,底面ABCD是边长为1的正方形,E为延长线上的一点且满足.(1)求证:平面;(2)当为何值时,二面角的大小为.
在中,的对边分别是,已知,平面向量,,且.(1)求△ABC外接圆的面积;(2)已知O为△ABC的外心,由O向边BC、CA、AB引垂线,垂足分别为D、E、F,求的值.