(本小题满分12分)已知函数为偶函数. (Ⅰ) 求的值;(Ⅱ) 若方程有且只有一个根, 求实数的取值范围.
设函数.(1)求的定义域及最小正周期;(2)求的单调递减区间.
已知点在抛物线上,直线(,且)与抛物线,相交于、两点,直线、分别交直线于点、.(1)求的值;(2)若,求直线的方程;(3)试判断以线段为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.
已知函数,.(1)若函数在其定义域上为增函数,求的取值范围;(2)当时,函数在区间上存在极值,求的最大值.(参考数值:自然对数的底数≈).
已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.
如图,在五面体中,四边形是边长为的正方形,平面,,,,,是的中点.(1)求证:平面;(2)求证:平面;(3)求五面体的体积.