如图,是一个正方体纸盒的展开图,请你任选三对非零的互为相反数,分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.
在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2.(1)说明△A1B1C1是由△ABC经过怎样的平移得到的?(2)直接写出点P2的坐标;(3)计算△A1B1C1的面积.
如图,在完全重合放置的两张长方形纸片ABCD中,AB=4,BC=8,将上面的纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为点G,连接DG,求图中阴影部分的面积.
若实数a,b,c在数轴上的对应点的位置如图所示,化简代数式-|b-c|.
如图,一圆柱体的底面周长为24cm,高AB为16cm,BC是上底面的直径.一只昆虫从点A出发,沿着圆柱的侧面爬行到点C,求昆虫爬行的最短路程.
已知是最大的负整数,b是多项式的次数,c是单项式的系数,且、b、c分别是点A、B、C在数轴上对应的数.(1)求、b、c的值,并在数轴上标出点A、B、C.(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒1个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请直接写出所有点M对应的数.(不必说明理由).