如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAE=∠DCF.(1)试说明:AE∥CF;(2) 连接AF和CE,试说明四边形AFCE是平行四边形.
如图,AB为⊙O的直径,BC为⊙O的切线,AC交⊙O于点E,D 为AC上一点,∠AOD=∠C.(1)求证:OD⊥AC;(2)若AE=8,cosA=,求OD的长.
已知关于x的一元二次方程,其中a、b、c分别为△ABC三边的长.(1)如果是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
解方程(1)(2)
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3),C(,0).将矩形OABC绕原点顺时针旋转90°,得到矩形.设直线与轴交于点M、与轴交于点N,抛物线的图象经过点C、M、N.解答下列问题:(1)分别求出直线和抛物线所表示的函数解析式;(2)将△MON沿直线MN翻折,点O落在点P处,请你判断点P是否在抛物线上,说明理由.(3)将直线MN向上平移,使它与抛物线只有一个交点,求此时直线的解析式.(4)点P是x轴上方的抛物线上的一动点,连接P M,P N ,设所得△PMN的面积为S.①求S的取值范围;②若△PMN的面积S为整数,则这样的△PBC共有 个.
如图,在平面直角坐标系中,⊙M与x轴交于A、B两点,AC是⊙M的直径,过点C的直线交x轴于点D,连接BC,已知点M的坐标为(0,),直线CD的函数解析式为y=-x+5.(1)求点D的坐标和BC的长;(2)求点C的坐标和⊙M的半径;(3)求证:CD是⊙M的切线.