如图,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含的代数式表示);(3)当(2)中 的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.
如图,一次函数 y 1 = kx + b ( k ≠ 0 ) 的图象与反比例函数 y 2 = m x ( m ≠ 0 ) 的图象交于 A(﹣1, n), B(3,﹣2)两点.
(1)求一次函数和反比例函数的解析式;
(2)点 P在 x轴上,且满足△ ABP的面积等于4,请直接写出点 P的坐标.
如图,四边形 ABCD是菱形,点 E、 F分别在边 AB、 AD的延长线上,且 BE = DF ,连接 CE、 CF.求证: CE = CF .
先化简: a 2 - 2 a + 1 a 2 - 1 ÷ ( a - 2 a a + 1 ) ,再从﹣1,0,1,2中选择一个适合的数代入求值.
计算: ( 3 . 14 ﹣ π ) 0 - 27 + | 1 - 3 | + 4 sin 60 ° .
如图,在平面直角坐标系中,抛物线 y = − x 2 + bx + c 交 x 轴于点 A 和 C ( 1 , 0 ) ,交 y 轴于点 B ( 0 , 3 ) ,抛物线的对称轴交 x 轴于点 E ,交抛物线于点 F .
(1)求抛物线的解析式;
(2)将线段 OE 绕着点 O 沿顺时针方向旋转得到线段 O E ' ,旋转角为 α ( 0 ° < α < 90 ° ) ,连接 AE ' , BE ' ,求 BE ' + 1 3 AE ' 的最小值;
(3) M 为平面直角坐标系中一点,在抛物线上是否存在一点 N ,使得以 A , B , M , N 为顶点的四边形为矩形?若存在,请写出点 N 的横坐标;若不存在,请说明理由.