如图,已知△ABC中,AB=12,BC=8,AC=6,点D、E分别在AB、AC上,如果以A、D、E为顶点的三角形和以A、B、C为顶点的三角形相似,且相似比为.(1)根据题意确定D、E的位置,画出简图;(2)求AD、AE和DE的长.
如图①,中,,.它的顶点的坐标为,顶点的坐标为,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒.(1)求的度数.(直接写出结果)(2)当点在上运动时,的面积与时间(秒)之间的函数图象为抛物线的一部分(如图②),求点的运动速度.(3)求题(2)中面积与时间之间的函数关系式,及面积取最大值时点的坐标.(4)如果点保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.
如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG 连结GD,求证△ADG≌△ABE; 如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=1,BC=2,E是线段BC上一动点(不含端点B,C ),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当E由B向C运动时,∠FCN的大小是否保持不变,若∠FCN的大小不变,求tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有名同学,则这批树苗有多少棵?(用含的代数式表示).(2) 初三(1)班至少有多少名同学?最多有多少名?
如图,在平面直角坐标系中,反比例函数的图象经过点A(1, 2),B(m ,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标
某班13位同学参加每周一次的卫生大扫除,按学校要求需要完成总面积为80m2的三项任务,它们的面积比例及每人每分钟完成各项目的工作量如下图所示: (1)从上述统计图中可知:每人每分钟给擦课桌椅、擦玻璃、扫地拖地的面积分别是 m2, m2, m2;(2)如果x人每分钟擦玻璃的面积是ym2,那么y关于x的函数关系式是 ;(3)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅.如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务