已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)设,若在上至少存在一点,使得成立,求的范围.
四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G、F分别是线段CE、PB的中点.(Ⅰ) 求证:FG∥平面PDC;(Ⅱ) 求二面角的正切值.
已知正项数列的首项,前项和满足.(Ⅰ)求证:为等差数列,并求数列的通项公式;(Ⅱ)记数列的前项和为,若对任意的,不等式恒成立,求实数的取值范围.
已知函数.(Ⅰ)若方程在上有解,求的取值范围;(Ⅱ)在中,分别是A,B,C所对的边,若,且,,求的最小值.
在极坐标系中,直线的极坐标方程为是上任意一点,点P在射线OM上,且满足,记点P的轨迹为。(Ⅰ)求曲线的极坐标方程;(Ⅱ)求曲线上的点到直线距离的最大值。