在中,已知,,解此三角形。
在直三棱柱中,, ,是的中点,是上一点,且.(1)求证: 平面;(2)求三棱锥的体积;(3)试在上找一点,使得平面.
已知函数,常数.(1)讨论函数的奇偶性,并说明理由;(2)若函数在上为增函数,求的取值范围
在平面直角坐标系,已知圆心在第二象限、半径为的圆C与直线y=x相切于坐标原点O.椭圆与圆C的一个交点到椭圆两焦点的距离之和为.(1)求圆C的方程;(2)圆C上是否存在异于原点的点Q,使(F为椭圆右焦点),若存在,请求出点Q的坐标;若不存在,请说明理由.
设平面向量,若存在实数和角,其中,使向量,且.(1).求的关系式;(2).若,求的最小值,并求出此时的值.
观察下列三角形数表1 -----------第一行 2 2 -----------第二行 3 4 3 -----------第三行 4 7 7 4 -----------第四行 5 11 14 11 5… … … …… … … … …假设第行的第二个数为,(Ⅰ)依次写出第六行的所有个数字;(Ⅱ)归纳出的关系式并求出的通项公式;(Ⅲ)设求证:…