在直三棱柱中,, ,是的中点,是上一点,且.(1)求证: 平面;(2)求三棱锥的体积;(3)试在上找一点,使得平面.
已知函数,其中. (1)若曲线在点处的切线方程为,求函数的解析式; (2)讨论函数的单调性; (3)若对于任意的,不等式在上恒成立,求的取值范围.
某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为元(为圆周率). (1)将表示成的函数,并求该函数的定义域; (2)讨论函数的单调性,并确定和为何值时该蓄水池的体积最大.
已知数列的前项和为满足,且. (1)试求出的值; (2)根据的值猜想出关于的表达式,并用数学归纳法证明你的结论.
若都是正实数,且.求证:与中至少有一个成立.
已知曲线在处的切线方程是. (1)求的解析式; (2)求曲线过点的切线方程.