计算:(1) (2)
学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图. 请你根据统计图提供的信息,解答以下问题: (1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为______度; (2)本次一共调查了_________名学生; (3)将条形统计图补充完整; (4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
如图,和都是等腰直角三角形,交于点分别交于点 试猜测线段和的数量和位置关系,并说明理由.
已知 (1)请化简这四个数; (2)根据化简结果,列式表示这四个数中“有理数的和”与“无理数的积”的差,然后计算结果.
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y. (1)求证:△DHQ∽△ABC; (2)求y关于x的函数解析式并求y的最大值; (3)当x为何值时,△HDE为等腰三角形?
如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转, DE,DF分别交线段AC于点M,K. (1)观察: ①如图2、图3,当∠CDF="0°" 或60°时,AM+CK_______MK(填“>”,“<”或“=”). ②如图4,当∠CDF="30°" 时,AM+CK___MK(只填“>”或“<”). (2)猜想:如图1,当0°<∠CDF<60°时,AM+CK_______MK,证明你所得到的结论. (3)如果,请直接写出∠CDF的度数和的值.