如图,在平面直角坐标系中,已知点A坐标为(2,4),直线与轴相交于点B,连结OA,抛物线从点O沿OA方向平移,与直线交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为,①用的代数式表示点P的坐标;②当为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在异于M的点Q,使△PQA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.
一个不透明的口袋中,装有30个外形及大小一样的球,颜色有红、黄二种,设计一套方案,估算两种颜色的球各多少个?
随意掷一枚骰子得到“5点的概率”是多少?设计一个方案来证明你的结论.
如图,已知正方形ABCD,点E是BC上一点,以AE为边作正方形AEFG。 (1)连结GD,求证△ADG≌△ABE; (2)连结FC,求证∠FCN=45°; (3)请问在AB边上是否存在一点Q,使得四边形DQEF是平行四边形?若存在,请证明;若不存在,请说明理由。
如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,CE⊥AE于点E。 (1)求证:四边形ADCE为矩形; (2)求证:四边形ABDE为平行四边形。
已知,观察: 通过观察,求的值.