设、分别为不等边的重心与外心、且平行于 轴(1)求点的轨迹的方程(2)是否存在直线过点并与曲线交于、两点且以为直径的圆过坐标原点若存在求出直线的方程若不存在请说明理由
(本小题满分12分)已知函数的最小正周期为. (Ⅰ)求;(Ⅱ)当时,求函数的值域.
(本小题满分12分)已知数列(I)设的通项公式;(II)当
(本小题满分12分)已知F1、F2分别是双曲线的左、右焦点,以坐标原点O为圆心,以双曲线的半焦距c为半径的圆与双曲线在第一象限的交点为A,与y轴正半轴的交点为B,点A在y轴上的射影为H,且(I)求双曲线的离心率;(II)若AF1交双曲线于点M,且的值.
(本小题满分12分)已知函数.(I)求的单调区间;(II)求证:不等式恒成立.
(本小题满分12分)某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为、,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一题即可被聘用(假设每个环节的每个问题回答正确与否是相互独立的).(I)求该学生被公司聘用的概率;(II)设该学生答对题目的个数为,求的分布列和数学期望.