甲、乙两名车工都加工要求尺寸是直径10毫米的零件.从他们所生产的零件中,各取5件,测得直径如下(单位:毫米)甲:10.05, 10.02,9.97,9.95,10.01乙:9.99,10.02,10.02,9.98,10.01分别计算两组数据的标准差(精确到0.01),说明在尺寸符合规格方面,谁做得较好?
已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC, (1)证明四边形ABDF是平行四边形; (2)若AF=DF=5,AD=6,求AC的长.
如图1,抛物线y=-x2+bx+c与x轴相交于点A,C,与y轴相交于点B,连接AB,BC,点A的坐标为(2,0),tan∠BAO=2,以线段BC为直径作⊙M交AB于点D,过点B作直线l∥AC,与抛物线和⊙M的另一个交点分别是E,F. (1)求该抛物线的函数表达式; (2)求点C的坐标和线段EF的长; (3)如图2,连接CD并延长,交直线l于点N,点P,Q为射线NB上的两个动点(点P在点Q的右侧,且不与N重合),线段PQ与EF的长度相等,连接DP,CQ,四边形CDPQ的周长是否有最小值?若有,请求出此时点P的坐标并直接写出四边形CDPQ周长的最小值;若没有,请说明理由.
如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒. (1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示); (2)设△MNC与△OAB重叠部分的面积为S. ①试求S关于t的函数关系式; ②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.
如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG. (1)求证:PC是⊙O的切线; (2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点; (3)在满足(2)的条件下,AB=10,ED=4,求BG的长.
如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C点处的俯角为45°. (1)尺规作图:作点C到直线AB的垂线段CE(不写作法,保留作图痕迹); (2)求海底C点处距离海面DF的深度.(结果精确到1米)