如图,已知三棱柱的侧棱与底面垂直,,,,分别是,的中点,点在直线上,且; (Ⅰ)证明:无论取何值,总有; (Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值; (Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.
设函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)设函数对任意都有成立,求的取值范围.
在△ABC中,顶点A,B,动点D,E满足:①;②,③共线. (Ⅰ)求△ABC顶点C的轨迹方程;(Ⅱ)是否存在圆心在原点的圆,只要该圆的切线与顶点C的轨迹有两个不同交点M,N,就一定有,若存在,求该圆的方程;若不存在,请说明理由.
如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=,SE⊥AD. (Ⅰ)证明:平面SBE⊥平面SEC;(Ⅱ)若SE=1,求直线CE与平面SBC所成角的正弦值.
第30届夏季奥运会将于2012年7月27日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者。将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”。(I)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望。
已知等差数列满足:.(Ⅰ)求的通项公式;(Ⅱ)若(),求数列的前n项和.