如图,已知三棱柱的侧棱与底面垂直,,,,分别是,的中点,点在直线上,且; (Ⅰ)证明:无论取何值,总有; (Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值; (Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.
已知函数y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2), (1)求P1,P2两点在双曲线xy=6上的概率; (2)求P1,P2两点不在同一双曲线xy=k(k≠0)上的概率。
如图是总体的一个样本频率分布直方图,且在区间[15,18)内的频数为8. (1)求样本容量; (2)若在[12,15)内的小矩形的面积为0.06, ①求样本在[12,15)内的频数; ②求样本在[18,33)内的频率。
集合A=(―∞,―2]∪[3,+∞),关于x的不等式(x-2a)·(x+a)>0的解集为B(其中a<0). (1)求集合B; (2)设p:x∈A,q:x∈B,且Øp是Øq的充分不必要条件,求a的取值范围。
已知定点A(-2,0)和B(2,0),曲线E上任一点P满足|PA|-|PB|=2. (1)求曲线E的方程; (2)延长PB与曲线E交于另一点Q,求|PQ|的最小值; (3)若直线l的方程为x=a(a≤),延长PB与曲线E交于另一点Q,如果存在某一位置,使得从PQ的中点R向l作垂线,垂足为C,满足PC⊥QC,求a的取值范围。
如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=,M,N是直线x=4上的两个动点,且·=0. (1)求椭圆的方程; (2)求|MN|的最小值; (3)以MN为直径的圆C是否过定点?请证明你的结论。