已知圆C:,直线L:(1)求证:对m,直线L与圆C总有两个交点;(2)设直线L与圆C交于点A、B,若|AB|=,求直线L的倾斜角;(3)设直线L与圆C交于A、B,若定点P(1,1)满足,求此时直线L的方程.
设集合, (I)若,试判定集合A与B的关系;(II)若,求实数a的取值集合.
已知是由满足下述条件的函数构成的集合:对任意,① 方程有实数根;② 函数的导数满足.(Ⅰ)判断函数是否是集合中的元素,并说明理由;(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;(Ⅲ)对任意,且,求证:对于定义域中任意的,,,当,且时,
已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.(1)求椭圆的标准方程;(2)已知过点的直线与椭圆交于,两点.① 若直线垂直于轴,求的大小;② 若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
二十世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染.人们长期食用含高浓度甲基汞的鱼类引起汞中毒. 引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm.罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下: (Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ
图1,平面四边形关于直线对称,,,.把沿折起(如图2),使二面角的余弦值等于.对于图二,完成以下各小题:(Ⅰ)求两点间的距离;(Ⅱ)证明:平面;(Ⅲ)求直线与平面所成角的正弦值.