已知函数的两个零点为,设,,且,求实数的取值范围.
(本题12分)在中,(Ⅰ)求AB的值;(Ⅱ)求的值.
(本小题满分14分)已知数列的前项和为,点在直线 上;数列满足,且,它的前9项和为153.(1)求数列、的通项公式;(2)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值;(3)设,是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.
(本小题满分14分)设上的两点,满足,椭圆的离心率短轴长为2,0为坐标原点.(1)求椭圆的方程;(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
(本小题满分14分)已知如图(1),梯形中,,,,、分别是、上的动点,且,设()。沿将梯形翻折,使平面平面,如图(2)。(Ⅰ)求证:平面平面;(Ⅱ)若以、、、为顶点的三棱锥的体积记为,求的最大值;(Ⅲ)当取得最大值时,求二面角的正弦值.
(本小题满分14分)已知函数R,且.(I)若能表示成一个奇函数和一个偶函数的和,求的解析式;(II)命题P:函数在区间上是增函数;命题Q:函数是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围;