如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请在图中画出这样的线段,并选择其中的一个说明这样画的道理.
由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在上图中再将两个空白的小正方形涂黑,使它成为轴对称图形.
如图,△ABC是等边三角形,BD是中线,P是直线BC上一点.(1) 若CP=CD,求证:△DBP是等腰三角形;(2) 在图①中建立以△ABC的边BC的中点为原点,BC所在直线为x轴,BC边上的高所在直线为y轴的平面直角坐标系,如图②,已知等边△ABC的边长为2,AO=,在x轴上是否存在除点P以外的点Q,使△BDQ是等腰三角形?如果存在,请求出Q点的坐标;如果不存在,请说明理由.
某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购3辆.轿车每辆7万元,面包车每辆4万元.公司投入购车的资金不超过58万元,设购买轿车为x辆,所需资金为所需资金为y万元.(1)写出y与x的函数关系式;(2)求出自变量x的取值范围;(3)若公司投入资金为52万元,问轿车和面包车各购多少辆?
已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE。求证:(1)△ABC≌△DEF;(2)GF=GC。
如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为已知条件,余下一个作为求证结论,编一道数学问题,并写出解答过程:已知条件: , , ;求证结论: .证明: