一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.
如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.
如图,在四边形ABCD中,E、F、G、H分别是AD、BD、BC、AC上的中点,AB=5,CD=7.求四边形EFGH的周长.
如图,在△ABC中,点F是BC的中点,AD平分∠BAC,CE⊥AD于点D,交AB于点E,连接DF,已知AB=16,AC=10,求DF的长.
如图,在△ABC中(AB≠AC),M为BC的中点,AD平分∠BAC交BC于D,BE⊥AD于E,CF⊥AD于F,求证:ME=MF.
如图,在△ABC中,CE平分∠ACB,AE⊥CE,延长AE交BC于点F,D是AB的中点,BC=20,AC=14,求DE的长.