(本小题满分12分)某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米造价45元,屋顶每平方米造价20元,试计算:(1)仓库面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
△ABC的内角的对边分别为 (1)求; (2)若求
(本小题10分)已知=-1. (1)若≥2,求的取值范围; (2),>-恒成立,求的取值范围。
(本小题12分)设函数. (1)求的单调区间; (2)若="1" ,为整数,且当0时,,求的最大值.
(本小题12分)已知数列的前n项和(其中为常数),且="4" =8. (1)求; (2)求数列的前项和.
(本小题12分)已知函数=的部分图象如图所示。 (1)求函数的解析式; (2)求函数=-的单调递增区间。