(本小题满分12分)在锐角中,角所对边分别为,已知.(Ⅰ)求的值;(Ⅱ)若,求的值.
若数列前n项和可表示为,则是否可能成为等比数列?若可能,求出a值;若不可能,说明理由
已知二次函数f(x)=ax2+bx,且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的不动点,若函数f(x)有且仅有一个不动点,(1)求f(x)的解析式;(2)若函数g(x)= f(x)++x2在 (0,]上是单调减函数,求实数k的取值范围;(3)在(2)的条件下,是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由。
已知集合P=[,2],函数y= log2(ax2-2x+2)的定义域为Q。(1)若PQ,求实数a的取值范围;(2)若方程log2(ax2-2x+2)=2在[,2]内有解,求实数a的取值范围。
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1所示的一条折线表示:西红柿的种植成本与上市时间的关系用图2所示的抛物线表示。(注:市场售价和种植成本的单位:元/102kg,时间单位:天) (1)写出图1表示的市场售价与时间的函数关系式P=f(t);写出图2表示的种植成本与时间的函数关系式Q=g(t); (2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?为多少? 图1 图2
若关于x的方程4x-k2x+k+3=0无实数解,求k的取值范围。