若△ABC的三边满足条件:a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.
为迎接“七 · 一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.
(1)求每辆大客车和每辆小客车的座位数;
(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?
动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是 A 佩奇, B 乔治, C 佩奇妈妈, D 佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.
(1)姐姐从中随机抽取一张卡片,恰好抽到 A 佩奇的概率为 .
(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到 A 佩奇,弟弟抽到 B 乔治的概率.
为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:
请根据以上图表,解答下列问题:
零花钱数额 x / 元
人数(频数)
频率
0 ⩽ x < 30
6
0.15
30 ⩽ x < 60
12
0.30
60 ⩽ x < 90
16
0.40
90 ⩽ x < 120
b
0.10
120 ⩽ x < 150
2
a
(1)这次被调查的人数共有 人, a = .
(2)计算并补全频数分布直方图;
(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.
如图,抛物线 y = a x 2 + 4 x + c ( a ≠ 0 ) 经过点 A ( − 1 , 0 ) ,点 E ( 4 , 5 ) ,与 y 轴交于点 B ,连接 AB .
(1)求该抛物线的解析式;
(2)将 ΔABO 绕点 O 旋转,点 B 的对应点为点 F .
①当点 F 落在直线 AE 上时,求点 F 的坐标和 ΔABF 的面积;
②当点 F 到直线 AE 的距离为 2 时,过点 F 作直线 AE 的平行线与抛物线相交,请直接写出交点的坐标.
在 ΔABC 中, AB = BC ,点 O 是 AC 的中点,点 P 是 AC 上的一个动点(点 P 不与点 A , O , C 重合).过点 A ,点 C 作直线 BP 的垂线,垂足分别为点 E 和点 F ,连接 OE , OF .
(1)如图1,请直接写出线段 OE 与 OF 的数量关系;
(2)如图2,当 ∠ ABC = 90 ° 时,请判断线段 OE 与 OF 之间的数量关系和位置关系,并说明理由
(3)若 | CF − AE | = 2 , EF = 2 3 ,当 ΔPOF 为等腰三角形时,请直接写出线段 OP 的长.