(本题满分12分,每小题6分)(1)若为基底向量,且若A、B、D三点共线,求实数k的值; (2)用“五点作图法”在已给坐标系中画出函数一个周期内的简图,并指出该函数图象是由函数的图象进行怎样的变换而得到的?
(本小题满分10分)如图,过抛物线上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点(1)求的值;(2)若,求面积的最大值。
(本小题满分10分)如图,已知面积为1的正三角形ABC三边的中点分别为D、E、F,从A,B,C,D,E,F六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X=0)(1)求;(2)求E(X)
选修4-5:不等式选讲(本小题满分10分)已知都是正数,且=1,求证:
选修4-2:矩阵与变换(本小题满分10分)在极坐标系中,A为曲线上的动点,B为直线上的动点,求AB的最小值。
选修4-2:矩阵与变换(本小题满分10分)若点A(2,2)在矩阵对应变换的作用下得到的点为B(-2,2),求矩阵M的逆矩阵