(本小题满分12分)已知函数.(1)当时,求的极值;(2)当时,试比较与的大小;(3)求证:().
已知函数在区间上的最大值是2,求实数的值.
已知,设命题:函数为减函数.命题:当时,函数恒成立.如果“p或q”为真命题,“p且q”为假命题,求c的取值范围.
数列满足 (1)证明:数列是等差数列; (2)求数列的通项公式; (3)设,求数列的前项和.
已知a,b,c分别为△ABC三个内角A,B,C的对边,. (1)求A; (2)若△ABC的面积为,求bsinB+csinC的最小值.
已知等差数列的首项公差且分别是等比数列的 (1)求数列和的通项公式; (2)设数列对任意正整数均有成立,求的值.