(本小题满分13分)某工厂去年的某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为(且n≥0),若产品销售价保持不变,第n次投入后的年利润为万元.(Ⅰ)求出的表达式;(Ⅱ)若今年是第1年,问第几年年利润最高?最高利润为多少万元?
如图,在平行六面体ABCD-A1BC1D1中, 已知:,且,O是B1D1的中点. (1)求的长; (2)求异面直线与所成角的余弦值.
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=,N为AB上一点,AB=4AN, M,S分别为PB,BC的中点. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小.
(本题满分14分)已知:抛物线的焦点坐标为,它与过点的直线相交于A,B两点,O为坐标原点。 (1)求值; (2)若OA和OB的斜率之和为1,求直线的方程。
(本题满分12分)给出命题方程表示焦点在轴上的椭圆;命题曲线与轴交于不同的两点. (1)在命题中,求a的取值范围; (2)如果命题“”为真,“”为假,求实数的取值范围.
已知 (1)若,求实数的取值范围; (2)若,求实数的取值范围.