夏令营组织学员到某一景区游玩,老师交给同学一张画有直角坐标系和标有A、B、C、D 四个景点位置的地图,指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与景点A、C和景点B、D所在的两条直线等距离;②到B、C两景点等距离。请你在平面直角坐标系中,画出景点E的位置,并标明坐标(用整数表示)。
先化简,再求值:,其中x=6.
解不等式组.
已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC 求证:BC=DE
如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决. (1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度 (2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红。
在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE. ⑴ 当t为何值时,线段CD的长为4; ⑵ 当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围; ⑶ 当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?