已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个. (1)从中任取1个球, 求取得红球或黑球的概率;(2)从中一次取2个不同的球,试列出所有基本事件;并求至少有一个是红球概率。(3)从中取2次,每次取1个球,在放回的条件下求至少有一个是红球概率。
(本小题满分12分)某工厂投资生产A产品时,每生产一百吨需要资金200万元,需要场地200平方米,可获利润300万元;投资生产B产品时,每生产一百吨需要资金300万元,需要场地100平方米,可获利润200万元。现在该工厂可使用资金1400元,场地900平方米,问应做怎样的组合投资,可使获利最大?并求出最大利润(以百万元为单位)。
(本小题满分12分)如图所示,在海拔为500m的海岛A处,测得海面上两船C、D的俯角分别为45°和30°,又测得°,求C、D两船间的距离。
(本大题满分12分)已知数列,的通项公式分别为(I) 求证数列{}是等比数列;(II) 求数列{}的前n项和为。
(本大题满分10分)已知的顶点坐标分别为A(-1,1),B(2,7),C(-4,5)。求AB边上的高CD所在的直线方程。
(本小题满分14分)已知圆C过点P(1,1)且与圆M:关于直线对称(1)求圆C的方程(2)设为圆C上一个动点,求的最小值(3)过点P作两条相异直线分别与圆C相交于A、B两点,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP与AB是否平行,并请说明理由.