设集合P={4,3t+2,5t2},Q={3t-2,5t-6,5t2-1},且P∩Q={4},求实数t及P∪Q.
已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M为圆C上的任意一点,点N在线段MA的延长线上,且=2,求点N的轨迹方程.
如图所示,在▱ABCD中,已知=,=.求证:B、F、E三点共线.
已知△ABC中,A(7,8),B(3,5),C(4,3),M、N是AB、AC的中点,D是BC的中点,MN与AD交于点F,求.
已知正三棱锥S-ABC的底面边长为a,高为h,在正三棱锥内取一点M,试求点M到底面的距离小于的概率.
街道旁边有一游戏:在铺满边长为9 cm的正方形塑料板的宽广地面上,掷一枚半径为1 cm的小圆板,规则如下:每掷一次交5角钱,若小圆板压在边上,可免费重掷一次;若小圆板全部落在正方形内可再交5角,再掷一次;若小圆板压在塑料板的顶点上,可获得一元钱.试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?