等比数列中,已知.(1)求数列的通项;(2)若等差数列,,求数列前n项和,并求最大值.
(本小题满分12分)(文)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率; (Ⅱ)(文)求甲获得这次比赛胜利的概率。
(理)设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。 (Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率; (Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
(文)已知向量m=(sinA,cosA),n=,m·n=1,且A为锐角. (Ⅰ)求角A的大小;(Ⅱ)求函数的值域.
(理)已知向量m=(sinA,cosA),n=,m·n=1,且A为锐角. (Ⅰ)求角A的大小;(Ⅱ)求函数的值域.
(文)等差数列中,且成等比数列,求数列前20项的和.