已知、、是△ABC的三条边,关于的一元二次方程有两个相等的实数根,方程的根为x=0。(1)试判断△ABC的形状。 (2)若、为关于x的一元二次方程x2 +mx-3m=0的两个根,求m的值。
(本题10分)如图:AC=DF,AD=BE,BC=EF.求证:∠C=∠F.
(本题10分)求下列各式中的x(1)9x2-64=0(2)125x3+27=0
如图,已知一条直线过点,且与抛物线交于A,B两点,其中点A的横坐标是.(1)求这条直线的函数关系式及点B的坐标;(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;(3) 过线段AB上一点P,作PM //x轴,交抛物线于点M,点M在第一象限,点N,当点M的横坐标为何值时,的长度最大?最大值是多少?
如图,在平面直角坐标系xOy中,将抛物线的对称轴绕着点P(,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上的一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是直线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.
如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M. (1)若∠AOB=60º,OM=4,OQ=1,求证:CN⊥OB. (2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形. ①问:-的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由. ②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.