先化简,再求值:2a2-3ab+b2-a2+ab-2b2,其中.
为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:
(1)这次参与调查的村民人数为 人;
(2)请将条形统计图补充完整;
(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.
如图,某反比例函数图象的一支经过点 A ( 2 , 3 ) 和点 B (点 B 在点 A 的右侧),作 BC ⊥ y 轴,垂足为点 C ,连接 AB , AC .
(1)求该反比例函数的解析式;
(2)若 ΔABC 的面积为6,求直线 AB 的表达式.
如图,在平行四边形 ABCD 中, AE = CF ,求证:四边形 BFDE 是平行四边形.
如图1,在 ΔABC 中,矩形 EFGH 的一边 EF 在 AB 上,顶点 G 、 H 分别在 BC 、 AC 上, CD 是边 AB 上的高, CD 交 GH 于点 I .若 CI = 4 , HI = 3 , AD = 9 2 .矩形 DFGI 恰好为正方形.
(1)求正方形 DFGI 的边长;
(2)如图2,延长 AB 至 P .使得 AC = CP ,将矩形 EFGH 沿 BP 的方向向右平移,当点 G 刚好落在 CP 上时,试判断移动后的矩形与 ΔCBP 重叠部分的形状是三角形还是四边形,为什么?
(3)如图3,连接 DG ,将正方形 DFGI 绕点 D 顺时针旋转一定的角度得到正方形 DF ' G ' I ' ,正方形 DF ' G ' I ' 分别与线段 DG 、 DB 相交于点 M 、 N ,求 ΔMNG ' 的周长.
如图1,抛物线的顶点 A 的坐标为 ( 1 , 4 ) ,抛物线与 x 轴相交于 B 、 C 两点,与 y 轴交于点 E ( 0 , 3 ) .
(1)求抛物线的表达式;
(2)已知点 F ( 0 , − 3 ) ,在抛物线的对称轴上是否存在一点 G ,使得 EG + FG 最小,如果存在,求出点 G 的坐标;如果不存在,请说明理由.
(3)如图2,连接 AB ,若点 P 是线段 OE 上的一动点,过点 P 作线段 AB 的垂线,分别与线段 AB 、抛物线相交于点 M 、 N (点 M 、 N 都在抛物线对称轴的右侧),当 MN 最大时,求 ΔPON 的面积.